Biosym (1993). DMol2.3. User Guide. Biosym Technologies, San Diego, USA.
Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Dewar, M. J. S. \& Thiel, W. (1977). J. Am. Chem. Soc. 99, 48994907.

Dewar, M. J. S., Zoebisch, E. G., Healy, E. F. \& Stewart, J. J. P. (1985). J. Am. Chem. Soc. 107, 3902-3909.

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Evans, M. E. (1972). Carbohydr. Res. 21, 473-475.
Flasche, M. (1994). Dissertation, Rheinisch-Westfälische Technische Hochschule, Aachen, Germany.
Gypser, A., Flasche, M. \& Scharf, H.-D. (1994). Liebigs Ann. Chem. pp. 775-780.
Hall, S. R., Flack, H. D. \& Stewart, J. M. (1992). Xtal3.2 Reference Manual. Universities of Western Australia, Australia, Geneva, Switzerland, and Maryland, USA.
Hedin, L. \& Lundqvist, B. I. (1971). J. Phys. C, 4, 2064-2083.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Keller, E. (1986). Chem. Unserer Zeit, 20, 178-181.
Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.
Meister, C., Shen, Z. \& Scharf, H.-D. (1984). Liebigs Ann. Chem. pp. 147-156.
Moruzzi, V. L., Janak, J. F. \& Williams, A. R. (1978). In Calculated Electronic Properties of Metals. Pergamon: New York.
Stewart, J. J. P. (1989a). J. Comput. Chem. 10, 209-220.
Stewart, J. J. P. (1989b). J. Comput. Chem. 10, 221-264.
Stewart, J. J. P. (1989c). QCPE Bull. 9, 581.
Taylor, R. \& Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063-5070.
Tsunoda, T., Suzuki, M. \& Noyori, R. (1981). Tetrahedron Lett. 21, 1357-1358.
Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

Acta Cryst. (1996). C52, 899-901

7-Amino-3-phenylcoumarin

Teruyuki Honda, ${ }^{a}$ Isao Fuili, ${ }^{a}$ Noriaki Hirayama, ${ }^{a *}$ Norihito Aoyama ${ }^{b}$ and Akira Miike ${ }^{b}$
${ }^{a}$ Department of Biological Science and Technology, Tokai University, 317 Nishino, Numazu, Shizuoka 410-03, Japan, and ${ }^{\text {b }}$ Research Laboratories, Kyowa Medex Co. Ltd, 600-1 Minami-Ishiki, Nagaizumi-cho, Sunto-gun, Shizuoka 411, Japan
(Received 20 September 1995; accepted 27 October 1995)

Abstract

There are two crystallographically independent molecules (A and B) having almost the same structure in the title crystal, $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NO}_{2}$. The phenyl ring attached at the 3-position is twisted markedly out of the plane of the coumarin moiety. The dihedral angles between the phenyl and coumarin rings are 48.9 (4) and 54.4 (4) ${ }^{\circ}$ in molecules A and B, respectively. There is a weak

$\mathrm{O} \cdots \mathrm{H}-\mathrm{N}$ intermolecular hydrogen bond between the B molecules involving the carbonyl O atom.

Comment

Coumarin derivatives, of which the title compound, (I), is an example, have been found to be very useful as laser dyes. In order to understand the effects of the functional groups attached at the C3 and C7 atoms on both the molecular structure and characteristics of functional dyes having a coumarin skeleton, the present analysis was undertaken.

(I)

There are two crystallographically independent molecules $(A$ and $B)$ in the asymmetric unit. The geometric parameters of the two molecules are essentially the same. An ORTEPII (Johnson, 1976) drawing of one of them, molecule A, together with the atomic numbering scheme is shown in Fig. 1. The coumarin moiety, consisting of atoms $\mathrm{O} 1, \mathrm{O} 2$ and $\mathrm{C} 2-\mathrm{C} 10$, is planar with an average deviation of the atoms from the least-squares plane of 0.030 (3) and 0.027 (2) \AA in molecules A and B, respectively. The phenyl ring attached at the C3 atom is twisted out of the coumarin plane, with dihedral angles of $48.9(4)$ and $54.4(4)^{\circ}$ in the A and B molecules, respectively.

Fig. 1. An ORTEPII (Johnson, 1976) drawing of molecule A of the title compound, with heavy atoms represented by 50% probability ellipsoids and H atoms shown as circles of arbitrary radii.

The $\mathrm{Ol}-\mathrm{C} 9$ bond length is significantly longer than the $\mathrm{O} 1-\mathrm{C} 2$ bond and the $\mathrm{C} 5-\mathrm{C} 6$ and $\mathrm{C} 8-\mathrm{C} 9$ bonds are significantly shorter than the other $\mathrm{C}-\mathrm{C}$ bonds in the phenyl ring. The $\mathrm{Cl}^{\prime}-\mathrm{C}^{\prime}$ and $\mathrm{Cl}^{\prime}-$ $C 6^{\prime}$ bonds are significantly longer and the $\mathrm{C} 2^{\prime}-\mathrm{C} 3^{\prime}$ bond is significantly shorter than the other ring C C bonds. The exocyclic bond angles around the C 2 and C 3 atoms are highly asymmetric, with the $\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$
and $\mathrm{C} 4-\mathrm{C} 3-\mathrm{Cl}^{\prime}$ angles being markedly larger than the other angles. The $\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 8$ angle is smaller than the $\mathrm{C} 4-\mathrm{C} 10-\mathrm{C} 5$ angle and the $\mathrm{C}^{\prime}-\mathrm{Cl}^{\prime}-\mathrm{C}^{\prime}$ angle of $118.3(2)^{\circ}$ is significantly smaller than the other endocyclic bond angles in the ring.
There is a very weak intermolecular hydrogen bond between the B molecules; $\mathrm{O} 2 \cdots \mathrm{H}(\mathrm{N} 7) 2.34$ (2), $\mathrm{O} 2 \cdots \mathrm{~N} 7^{\mathrm{i}} 3.244(2) \AA$ and $\mathrm{O} 2 \cdots \mathrm{H}(\mathrm{N} 7)-\mathrm{N} 7^{\mathrm{i}} 172(2)^{\circ}$ [symmetry code: (i) $1-x,-y,-z$]. The N7-C7 bond length in molecule B of 1.360 (3) \AA is significantly shorter than the corresponding bond length of 1.375 (3) \AA found in molecule A. Although the $\mathrm{O} 2 \cdots \mathrm{~N} 7$ distance is unusually long for an $\mathrm{O} \cdots \mathrm{H}-\mathrm{N}$ hydrogen bond, the shortening of the $\mathrm{N} 7-\mathrm{C} 7$ bond in molecule B suggests that there is a weak hydrogen bond.

Experimental

Crystals of the title compound were grown from a chloroform solution at 293 (5) K in a darkroom.

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NO}_{2}$
$M_{r}=237.26$
Triclinic
$P \overline{1}$
$a=9.648$ (2) \AA
$b=21.24(1) \AA$
$c=5.925(3) \AA$
$\alpha=94.23$ (4) ${ }^{\circ}$
$\beta=106.93(3)^{\circ}$
$\gamma=86.66(3)^{\circ}$
$V=1157.3(8) \AA^{3}$
$Z=4$
$D_{x}=1.36 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega / 2 \theta$ scans
Absorption correction: none
5241 measured reflections
4758 independent reflections
3851 observed reflections $[F>3 \sigma(F)]$

Refinement

Refinement on F
$R=0.058$
$w R=0.075$
$S=3.45$
3851 reflections
414 parameters
$w=1 / \sigma^{2}(F)$
$(\Delta / \sigma)_{\text {max }}=0.01$
$\Delta \rho_{\text {max }}=0.27 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.27 \mathrm{e}^{-3}$
$\mathrm{Cu} K \alpha$ radiation
$\lambda=1.54184 \AA$
Cell parameters from 25 reflections
$\theta=30-35^{\circ}$
$\mu=0.740 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Plate
$0.36 \times 0.14 \times 0.05 \mathrm{~mm}$
Yellow

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$B_{\text {eq }}=(4 / 3) \sum_{i} \sum_{j} \beta_{i j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$B_{\text {eq }}$
O 14	0.8254 (2)	0.47515 (7)	0.0799 (2)	4.13 (3)
O2A	0.7446 (2)	0.38497 (8)	-0.0979 (3)	5.05 (4)
N7A	1.0463 (3)	0.6642 (1)	0.4451 (5)	6.07 (6)
C2A	0.7378 (2)	0.4254 (1)	0.0561 (3)	3.78 (4)
C3A	0.6490 (2)	0.4246 (1)	0.2174 (3)	3.68 (4)
C4A	0.6667 (2)	0.4701 (1)	0.3955 (3)	3.87 (4)
C5A	0.7856 (2)	0.5695 (1)	0.6022 (4)	4.31 (5)
C6A	0.8792 (3)	0.6161 (1)	0.6113 (4)	4.58 (5)
C7A	0.9556 (2)	0.6164 (1)	0.4424 (4)	4.34 (5)
C8A	0.9356 (2)	0.5681 (1)	0.2647 (4)	4.16 (5)
C9A	0.8413 (2)	0.5221 (1)	0.2595 (3)	3.60 (4)
C10A	0.7625 (2)	0.5203 (1)	0.4238 (3)	3.61 (4)
$\mathrm{Cl}^{\prime} \mathrm{A}^{\prime}$	0.5492 (2)	0.3719 (1)	0.1840 (3)	3.74 (4)
$\mathrm{C}^{\prime}{ }^{\text {A }}$ A	0.4536 (2)	0.3556 (1)	-0.0375 (4)	4.49 (5)
$\mathrm{Cl}^{\prime} \mathrm{A}$	0.3610 (3)	0.3072 (1)	-0.0654 (5)	5.23 (6)
C4' ${ }^{\text {A }}$	0.3626 (3)	0.2726 (1)	0.1242 (5)	5.30 (6)
$\mathrm{C5}^{\prime} \mathrm{A}$	0.4560 (3)	0.2880 (1)	0.3443 (4)	5.02 (6)
$\mathrm{C6}^{\prime}{ }^{\text {A }}$	0.5480 (2)	0.3375 (1)	0.3748 (4)	4.27 (5)
O1B	0.3436 (1)	0.06380 (7)	0.0930 (2)	3.99 (3)
$\mathrm{O} 2 B$	0.1220 (2)	0.07321 (8)	-0.1385 (2)	5.15 (4)
N7B	0.8237 (2)	0.0209 (1)	0.5640 (4)	4.85 (4)
C2B	0.2063 (2)	0.0888 (1)	0.0522 (3)	3.74 (4)
C3B	0.1723 (2)	0.13109 (9)	0.2358 (3)	3.50 (4)
C4B	0.2763 (2)	0.1395 (1)	0.4470 (3)	3.68 (4)
C5B	0.5301 (2)	0.1177 (1)	0.7031 (3)	4.12 (4)
C6B	0.6620 (2)	0.0889 (1)	0.7271 (4)	4.20 (4)
C7B	0.6926 (2)	0.0512 (1)	0.5385 (3)	3.73 (4)
C8B	0.5821 (2)	0.0441 (1)	0.3246 (3)	3.77 (4)
C9B	0.4500 (2)	0.0734 (1)	0.3074 (3)	3.45 (4)
C10B	0.4167 (2)	0.11096 (9)	0.4896 (3)	3.54 (4)
$\mathrm{Cl}^{\prime} B$	0.0261 (2)	0.16221 (9)	0.1884 (3)	3.46 (4)
$\mathrm{C}^{\prime}{ }^{\text {B }}$	-0.0286 (2)	0.1993 (1)	-0.0059 (4)	4.04 (4)
$\mathrm{C}^{\prime}{ }^{\prime} B$	-0.1615 (3)	(0.2303 (1)	-0.0415 (4)	4.47 (5)
$\mathrm{C4}^{\prime} B$	-0.2439 (2)	0.2251 (1)	0.1118 (4)	4.43 (5)
$\mathrm{C5}^{\prime} B$	-0.1921 (3)	0.1878 (1)	0.3020 (4)	4.50 (5)
$\mathrm{C6}^{\prime} B$	-0.0579 (2)	0.1571 (1)	0.3408 (4)	4.10 (4)

Table 2. Selected bond distances (\AA), angles $\left({ }^{\circ}\right)$ and torsion angles (${ }^{\circ}$)

	Molecule A	Molecule B
O1-C2	$1.365(2)$	$1.359(2)$
O1-C9	$1.384(2)$	$1.391(2)$
O2-C2	$1.219(2)$	$1.220(2)$
N7-C7	$1.375(3)$	$1.360(3)$
C2-C3	$1.460(3)$	$1.458(3)$
C3-C4	$1.356(3)$	$1.364(3)$
C3-C1	$1.484(3)$	$1.481(3)$
C4-C10	$1.420(3)$	$1.412(3)$
C5-C6	$1.365(3)$	$1.353(3)$
C5-C10	$1.410(3)$	$1.415(3)$
C6-C7	$1.406(3)$	$1.417(3)$
C7-C8	$1.394(3)$	$1.403(3)$
C8-C9	$1.367(3)$	$1.366(3)$
C9-C10	$1.402(3)$	$1.396(3)$
C2-O1-C9	$123.0(1)$	$122.9(1)$
O1-C2-O2	$115.5(2)$	$115.7(2)$
O1-C2-C3	$118.0(2)$	$118.3(2)$
O2-C2-C3	$126.5(2)$	$126.0(2)$
C2-C3-C4	$118.6(2)$	$118.4(2)$
C2-C3-C1	$117.8(2)$	$119.1(2)$
C4-C3-C1	$123.6(2)$	$122.5(2)$
C3-C4-C10	$122.7(2)$	$122.3(2)$
C6-C5-C10	$121.2(2)$	$121.4(2)$
C5-C6-C7	$120.9(2)$	$121.3(2)$
N7-C7-C6	$121.4(2)$	$121.4(2)$
N7-C7-C8	$119.4(2)$	$120.1(2)$
C6-C7-C8	$119.2(2)$	$118.4(2)$
C7-C8-C9	$118.8(2)$	$118.7(2)$
O1-C9-C8	$116.5(2)$	$116.3(2)$
O1-C9-C10	$119.7(2)$	$119.4(2)$

$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$123.8(2)$	$124.2(2)$
$\mathrm{C} 4-\mathrm{C} 10-\mathrm{C} 5$	$126.0(2)$	$125.5(2)$
$\mathrm{C} 4-\mathrm{C} 10-\mathrm{C} 9$	$117.8(2)$	$118.5(2)$
$\mathrm{C} 5-\mathrm{C} 10-\mathrm{C} 9$	$116.2(2)$	$116.0(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{Cl}^{\prime}-\mathrm{C}^{\prime}$	$-50.5(3)$	$-56.2(2)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C}^{\prime}$	$172.7(2)$	$174.6(2)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{Cl}^{\prime}$	$-4.2(3)$	$-4.2(3)$

All non-H atoms were located by direct methods using SIR88 (Burla et al., 1989) and refined anisotropically. All H atoms were found from difference Fourier maps and refined isotropically.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: CAD-4 Software. Program(s) used to refine structure: TEXSAN (Molecular Structure Corporation, 1992). Molecular graphics: ORTEPII (Johnson, 1976).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates, complete geometry and torsion angles have been deposited with the IUCr (Reference: NA1203). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHl 2HU, England.

References

Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Polidori, G., Spagna, R. \& Viterbo, D. (1989). J. Appl. Cryst. 22, 389-393.

Enraf-Nonius (1989). CAD-4 Software. Version 5. Enraf-Nonius, Delft, The Netherlands.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Molecular Structure Corporation (1992). TEXSAN. Single Crystal Structure Analysis Package. MSC, 3200 Research Forest Drive, TX 77381, USA.

Acta Cryst. (1996). C52, 901-904

Absolute Configuration of D-Brompheniramine Maleate

Masood Parvez* and Mike Rusiewicz
Department of Chemistry, The University of Calgary, 2500
University Drive NW, Calgary, Alberta, Canada T2N 1 N4.
E-mail: parvez@acs.ucalgary.ca

(Received 12 September 1995; accepted 2 November 1995)

Abstract

The crystal structure and absolute configuration of the title compound, 3-(4-bromophenyl)- N, N-dimethyl-3-(2-pyridyl)propylammonium hydrogen maleate, $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{BrN}_{2}^{+} . \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}_{4}^{-}$, a potent anti-allergic agent, has been determined. The crystals are composed of two independent brompheniraminium cations, which differ

significantly in their conformations, hydrogen bonded to maleate anions, with N...O distances of 2.673 (9) and 2.664 (9) \AA. The anions form seven-membered rings through strong intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, with $\mathrm{O} \cdots \mathrm{O}$ distances of $2.418(10)$ and 2.430 (8) Å.

Comment

As a continuation of our studies (Parvez, 1990) on the anti-allergic drugs effective on H 1 receptors, we have determined the crystal structure and absolute configuration of D-brompheniramine hydrogen maleate, (1).

(1)

ORTEPII drawings (Johnson, 1976) of the two independent molecules, A and B, found in the crystal of (1), with the atomic numbering schemes, are shown in Fig. 1. The molecular dimensions in both molecules are unexceptional, with mean bond distances $\mathrm{Br}-\mathrm{C}_{s p^{2}}$ $1.92(1), \mathrm{N}-\mathrm{C}_{s p^{3}} 1.48(2), \mathrm{N}-\mathrm{C}_{s p^{2}} 1.34(1), \mathrm{C}_{s p^{3}}-\mathrm{C}_{s p_{o}^{3}}$ 1.52 (1), $\mathrm{C}_{s p^{3}}-\mathrm{C}_{s p^{2}} 1.52$ (3) and $\mathrm{C}-\mathrm{C}_{\text {aromatic }} 1.37$ (3) A in the cations, and $\mathrm{C}_{s p^{2}}-\mathrm{C}_{s p^{2}} 1.49(1), \mathrm{C}=\mathrm{C} 1.34(1)$, $\mathrm{C}-\mathrm{O} 1.29(1), \mathrm{C}-\mathrm{O}^{-} 1.27(1)$ and $\mathrm{C}=\mathrm{O} 1.22(1) \AA$ in the anions. The angles at the $\mathrm{C} 13 A$ and $\mathrm{C} 13 B$ atoms [111.8 (9) and $118.3(8)^{\circ}$, respectively] are significantly different in the two molecules, showing more strain in molecule B. The six-membered rings in the two molecules are essentially planar, with the maximum deviation from the least-squares planes being 0.03 (2) \AA for atom C2A.

The maleate anions are hydrogen bonded to the dimethylamino groups of the brompheniraminium cations via normal $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 3) and show typically strong intramolecular hydrogen bonding.

The two molecules show significant differences in their conformations. For instance, the mean-planes angles between the pyridyl and phenyl rings ($A 1$), the pyridyl ring and $\mathrm{C} 6-\mathrm{C} 13-\mathrm{C} 14$ chain (A2), and the phenyl ring and $\mathrm{C} 6-\mathrm{C} 13-\mathrm{Cl4}$ chain (A3) in molecule A are $72.5(5), 82.9(6)$ and $70.5(7)^{\circ}$, respectively, compared with values of $79.6(5), 79.3(5)$ and 14.4 (9) ${ }^{\circ}$, respectively, in molecule B. The corresponding angles in the crystal structure of DL-pheniramine hydrogen maleate, (2) (Parvez \& Rusiewicz, 1996), with values of $87.1(3), 86.6(3)$ and $6.9(6)^{\circ}$, respectively, show it to have a conformation similar to that of molecule B. The conformation of neither of the

